Cellular/Molecular

Gene Expression by Mouse Inner Ear Hair Cells during Development

¹Déborah I. Scheffer,^{1,2*} ¹Jun Shen,^{1,3*} ¹David P. Corey,¹ and ¹Zheng-Yi Chen²

¹Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, ²Department of Otology and Laryngology, Harvard Medical School and Massachusetts Eye and Ear, Boston, Massachusetts 02114, and ³Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115

Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes.

Key words: cochlea; development; FACS; hair cell; RNA-Seq; vestibule

Introduction

Hair cells (HCs), the mechanoreceptor cells for hearing and balance, are epithelial cells that have undergone terminal division and differentiation. They are embedded in sensory epithelia adjacent to cells that do not have a mechanosensory function. Understanding the gene-expression patterns that differentiate HCs from various surrounding cells (SCs) can help elucidate the proteins that give HCs their unique function.

Because HCs do not divide they must last the life of an animal, which can be many decades in the case of humans. Death of HCs over time leads to deficits in hearing and balance (Groves, 2010). Much research on treatment for age-related hearing loss is focused on identifying the patterns of gene expression that lead to

*D.I.S. and J.S. contributed equally to this work.

The authors declare no competing financial interests.

DOI:10.1523/JNEUROSCI.5126-14.2015

Copyright © 2015 the authors 0270-6474/15/356366-1515.00/0

an HC phenotype, so that induction of these genes in remaining supporting cells might restore function (for review, see Géléoc and Holt, 2014). But first we need to understand gene expression during development.

Some hearing loss has hereditary causes. Congenital deafness occurs in 1 of approximately 500 births and >50% of cases are caused by gene defects (Smith et al., 1993). Many such genes are enriched in HCs: although HCs constitute only approximately one-tenth of the cells in the sensory epithelium of the cochlea, approximately one-third of the genes causing inner ear malformations or dysfunction in the mouse involve HC pathology (85 of 277; http://hearingimpairment.jax.org/master_table1.html). In humans, nearly 300 genetic loci for hearing impairment have been described, but the causative genes for \sim 100 have been identified (116; http://hereditaryhearingloss.org). Understanding the complete transcriptome of HCs may thus facilitate the discovery of new deafness genes.

We previously performed transcriptome studies of HCs by differential analysis between normal whole-sensory epithelia and mutant epithelia, either lacking HCs ($Atoh1^{-/-}$; Scheffer et al., 2007a, b) or lacking hair bundles ($Pou4f3^{-/-}$; Z.-Y. Chen and D.P. Corey, unpublished observations). But elimination or inactivation of one cell type can affect gene expression by remaining cells, compromising gene identification by differential comparison. It would be better to isolate pure populations of normal cells. Here, we used a mouse strain that expresses eGFP driven by the promoter for *Pou4f3* (Huang et al., 2013), an HC transcription factor. We developed an enzymatic treatment to dissociate cells of the sensory epithelia, and FACS to purify HC. With next-generation or high-throughput sequencing (HTS), we performed an unbiased and quantitative transcriptome study at four devel-

Received Dec. 17, 2014; revised Feb. 17, 2015; accepted March 6, 2015.

Author contributions: D.I.S., J.S., D.P.C., and Z.-Y.C. designed research; D.I.S. and J.S. performed research; D.I.S. and J.S. analyzed data; D.I.S., J.S., and D.P.C. wrote the paper.

This research was supported by National Institutes of Health grants R01-DC000304 and R01-DC002281 (D.P.C.), R03-DC013866 (J.S.), and R01-DC006908 (Z.-Y.C.); by the Frederick and Ines Yeatts Hair Cell Regeneration Grant (Z.-Y.C.); by P30 DC05209 to the Eaton-Peabody Laboratory of M.E.E.; and by a Hearing Health Foundation Emerging Research Grant (J.S.). D.P.C. is an Investigator and J.S. was an Associate of the Howard Hughes Medical Institute. We appreciate assistance from the Harvard Stem Cell Institute Flow Cytometry Core Facility at Massachusetts General Hospital and from the Harvard Medical School Biopolymer Facility. We also appreciate the gift of a DNAHS probe from Anja Beckers at Hannover Medical School. We thank the Neurobiology Imaging Facility (a part of the Neural Imaging Center supported by National Institute of Neurological Disorders and Stroke P30 Core Center Grant NS072030) for consultation and instrumentation and Dr. Lisa Goodrich for useful comments on this manuscript.

Correspondence should be addressed to either of the following: David P. Corey, Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, E-mail: dcorey@hms.harvard.edu; or Zheng-Yi Chen, Department of Otology and Laryngology, Harvard Medical School and Massachusetts Eye & Ear, Boston, MA 02114. E-mail: zheng-yi_chen@meei.harvard.edu.

opmental time points, before and during the acquisition of mechanosensitivity. We compared gene expression by HCs to that of the other cells in the sensory epithelium, collectively referred to as surrounding cells. Groups of genes differentially expressed in one or another cell type were linked to function. To make these data and comparative expression metrics publically available, we created the Shared Harvard Inner Ear Laboratory Database (shield.hms.harvard.edu), which presents gene expression data integrated with comprehensive annotation including potential deafness loci.

Materials and Methods

Animal protocols. All experiments were performed in compliance with ethical regulations and approved by the Animal Care Committees of Massachusetts Eye and Ear and Harvard Medical School.

Cell dissociation, FACS, and RNA extraction. We used a transgenic mouse strain expressing GFP under the control of the Pou4f3 promoter (Tg(Pou4f3-Isl1-eGFP)). These mice have normal morphology, normal expression of differentiation markers, and normal function until 17 months old (Huang et al., 2013). We also used a strain expressing tdTomato under the control of the Gfi1 promoter (Gfi1^{tm1(Cre)Gan}; $R26^{tdTomato}$). In both strains, the only fluorescent cells in the inner ear are HCs. Animals from either sex were used. Utricles were dissected from the temporal bone and (at postnatal stages) incubated for 2 min in protease XXIV (0.1 mg/ml) to remove the otoconia. Cochleae were dissected and freed from the spiral ganglion and Reissner's membrane to expose the sensory epithelium. All dissections were done in ice-cold PBS, and utricles and cochleae were dissected in <1 h. The organs were collected in DMEM (Life Technologies) + 5% FBS on ice. The cells were dissociated by incubating the organs at 37°C in 1 mg/ml dispase (Gibco) and 1 mg/ml collagenase I (Worthington) in 100 μ l for ~10–12 utricles or 200 μ l for 10-12 cochleae for 30 min at E16 and P0 or 45 min at P4 and P7 and triturating with a pipette. The dissociation was controlled visually with an inverted microscope. Dissociation buffer (Gibco 13151-014 + 5% FBS) was added to complete the dissociation and the samples were placed on ice. The dissociated tissues were filtered through a 40 μ m cell strainer to eliminate clumps before sorting. Cells were sorted on a BD FACS Aria II cell sorter using a 100 μ m nozzle and low pressure. Hair cells were collected using the brightest GFP fluorescence signal and other cells were collected using the lowest fluorescence signal. The number of collected cells is indicated in Figure 1D. Cells were collected directly into a lysis buffer from the RNeasy Plus Micro kit (Qiagen). Total RNA extraction was performed using the manufacturer's recommendation and the quality was assessed with Agilent 2100 Bioanalyzer picoChips.

Study design and statistics. In this series of 16 samples, we used a matrix design of three factors: cell types (HCs and SCs), tissues sources (cochlea and utricle), and developmental stages (E16, P0, P4, and P7). We did not include a biological duplicate of the same condition; instead, for differential gene expression analysis of each factor, we combined samples of different levels in other factors and treated them as replicates to allow statistical analysis. This practice overestimated the variance due to other factors; therefore, the FDR values were more conservatively estimated than those calculated when true biological replicates were used.

HTS. mRNA was amplified using the Ovation 3'-DGE System (Nu-GEN). 3'-enriched transcriptome tags [~500 bp on average from the poly(A) tail] were converted into nondirectional Illumina sequencing libraries at the Biopolymer Facility at Harvard Medical School. Synthetic spike-in standards were not used, because the goal was not absolute quantification, but relative differential expression. Single-end reads of 35 bp or 50 bp were sequenced using standard protocols on an Illumina HiSeq Sequencer. Paired-end reads were used for GFP⁺ cochlea and utricle at P0 and some sample libraries were rerun when the original read depths were not sufficient. The sequence quality was assessed using the open-source FastQC program. Quality-filtered reads were mapped against NCBI build 37/mm9 mouse genome assembly at DNAnexus (dnanexus.com). Assignments of nonunique alignments were weighed by the posterior probability of their mapping. The read counts of 20,207 RefSeq mouse genes were calculated using the 3SEQ transcriptomebased quantification analysis pipeline (https://classic.dnanexus. com/whitepapers/DNAnexus-whitepaper-rna-3seq-transcriptome.pdf). Custom scripts were developed to generate raw read-count tables. These data were summarized, normalized, and statistically tested for differential gene expression for each gene under various comparison schemes using the DESeq package in R/Bioconductor (Anders and Huber, 2010). Multiple testing corrections were performed using the Benjamini and Hochberg methods and the false discovery rate (FDR) was calculated for each gene.

We chose nondirectional single-end sequencing of 3'-tagged mRNA. RNA-Seq of the 3' end more accurately quantifies transcripts than RNA-Seq of full-length transcripts, because length and GC content contribute most to sequencing bias (Asmann et al., 2009; Morrissy et al., 2009). Because recovered HCs were few in number, we had to amplify the transcripts to reach sufficient amount to construct the HTS libraries. Amplification inevitably introduces bias, which would be exacerbated by variable lengths of different genes if samples were random primed and the integrity of the RNA samples would be variably affected. Using RPKM/FPKM to represent gene expression values would not be as accurate because of variable actual length of transcripts amplified, especially for genes expressed at low levels and with complex genomic organization (Steijger et al., 2013). On the other hand, 3'-tags of the transcripts are of similar lengths, less susceptible to RNA degradation, and universally amplified from the polyA tail. Read counts are therefore less biased and they more faithfully reflect gene expression levels in the cells. Because the 3'-tags are short (with a mode of \sim 500 bp) and because we aimed to quantify the expression level, single-end sequencing was sufficient to generate the read counts. Because few genes have overlapping 3'-ends in opposite direction in mammalian genomes, we opted for nondirectional sequencing.

The dChip V2010.01 software (https://sites.google.com/site/dchipsoft/) was used to visualize the expression data by hierarchically clustering genes. The distance metric between two genes was calculated as correlation of the expression of the 3'-tags of two genes across samples, and the centroid linkage method was used to compute the distances between a gene and a gene cluster, and between two gene clusters (Golub et al., 1999). This involved log transformation of the normalized expression values from the DESeq analysis, computing the standardized expression values (scaled to have mean 0 and SD 1) of a gene across samples, averaging the standardized values of genes sample wise in a gene cluster, and using this averaged expression profile as the expression vector of a gene cluster to compute distance between gene clusters.

The raw data are available on the GEO database, accession number GSE60019.

RT-PCR. RNA was extracted from P6 cochleae, utricles, and hearts of CD1 mice using QIAzol (Qiagen), treated with DNase I (Roche), and reverse transcribed using random hexamer primer, with Superscript II (Invitrogen) to generate cDNA. PCRs were performed with recombinant TaqDNA polymerase (Invitrogen).

Quantitative PCR. Real-time analysis was performed using TaqMan gene expression assays (Life Technologies) on an Mx3000P QPCR system (Agilent Technologies). All reactions were run in duplicate using the Platinum Quantitative PCR SuperMix-UDG w/ROX (Life Technologies). Data were normalized to the housekeeping gene *Pgk1* and analyzed using the deltaCt method. Probes used include the following: Mm01181529_s1 (*Atoh1*), Mm00438168_m1 (*Cdkn1b/p27Kip1*), Mm00517585_m1 (*Isl1*), Mm01274015_m1 (*Myo7a*), Mm01168739_m1 (*Pcdh15*), Mm00436617_m1 (*Pgk1*), Mm00454761_m1 (*Pou4f3*), Mm00435971_m1 (*Prox1*), and Mm03053810_s1 (*Sox2*) from Life Technologies. The *Cdh23* probe was designed to recognize isoforms E and F (accession EU681829 and EU681830): forward primer (5'-GTGATCA ACCAGGCCTACA/3IABkFQ/, and reverse primer 5'-TTGACGATGA AGATGGGTGTC-3', synthesized by Integrated DNA Technologies.

PCR primers include the following: *Gapdh*: Forward 5'-CTCATGAC-CACAGTCCATGC-3', Reverse 5'-AGGTCCACCACCCTGTTGC-3'; *Emcn* ISH probe: Forward 5'-CAGATGGAACACCTCCCG-3', Reverse 5'-TCCACGGATCGAGGCTA-3'; *Ptgds* ISH probe: Forward 5'-GACA-CAGTGCAGCCCAACTTTCAA-3', Reverse 5'-TGACTGACTGCACTCCTC-

CACCTGCGTT-3'; *Strip2* ISH probe: Forward 5'-GAATATGGAGA TTCAGACGGGC-3', Reverse 5'-AAACATGACCACCTTCCAGAGC-3'; and *Lmod3* ISH probe: Forward 5'-GTGAGGAGCTCGAT GAAGACG-3', Reverse 5'-TCGTCATCTTCCTCCTCCTCC-3'.

In situ *hybridization*. Probes were obtained from Anja Beckers (*Dnah5*; Beckers et al., 2007), I.M.A.G.E clone (ID 4984025; *Grp*), or amplified from mouse cochlear cDNA (see primer list), and cloned into the pCRII-Topo vector (Invitrogen). Inner ears of CD1 mice were collected at stages E16 and P6, fixed in 4% formaldehyde, and cryosectioned (7- to $10-\mu$ m-thick frozen sections). *In situ* hybridization was performed as previously described (Scheffer et al., 2007b).

Immunocytochemistry. For cryosections, inner ears of P6 CD1 mice of either sex were collected, fixed in 4% paraformaldehyde, and cryosectioned (7–10 μ m thick). A microwave antigen-retrieval technique was applied (H-3300; Vector Laboratories) before permeabilization and blocking in 1× PBS + 0.05% Triton+ 8% normal goat serum for 1 h at room temperature. The sections were then incubated with primary antibodies overnight at 4°C and secondary antibodies for 1 h in blocking solution at room temperature. Stained slices and tissues were mount with ProLong Gold Antifade Reagent with DAPI (Invitrogen).

For whole mount inner ears of CD1 mice were fixed in 4% paraformaldehyde and dissected to expose the organs of Corti. Tissues were permeabilized/blocked in $1 \times PBS + 0.3\%$ Triton + 8% normal goat serum (1 h, room temperature), then incubated with primary antibodies overnight (4°C) and secondary antibodies for 1 h in blocking solution (room temperature).

Primary antibodies were rabbit polyclonal anti-MYO7A (1/2000; Proteus Biosciences; 25-6790), mouse monoclonal anti-MYO7A (1/2000; Developmental Studies Hybridoma Bank, University of Iowa; 138-1), mouse monoclonal anti-LDB3 (1/300; Abnova; H00011155-M06), rabbit polyclonal anti-PMCA2 (1/200; Dumont et al., 2001), rabbit polyclonal anti-LMOD3 (1/1500; Proteintech; 14948-1-AP), and rabbit polyclonal anti-LMOD1 (1/1000; Proteintech; 15117-1-AP). Secondary antibodies were Alexa Fluor 488 or 594 goat anti-rabbit or anti-mouse antibodies (Invitrogen). Actin was counterstained with Alexa Fluor 594 phalloidin (Invitrogen).

Biological process ontology analysis. To ascertain the extent of functional enrichment we performed an analysis with the functional annotation tool DAVID 6.7 (Huang da et al., 2009a, b), which determines whether biological processes are enriched within a target list of genes. Genes were considered enriched in cochlear and utricular HCs when total read count was >50 and, at the considered age, $(GFP^+ - GFP^-)/(GFP^+ + GFP^-) > 0.67$.

Principal component analysis. Normalized gene expression values were assembled into a matrix with rows of different sample types and columns of genes. Genes with a total number of reads across all ages <10 were excluded and the numbers <1 at a single age were rounded to 1. The matrix was log2 transformed and the principal component analysis (PCA) was performed on the data using the statistics package in R. Each gene was considered a variable vector.

Results

RNA-Seq of purified mouse hair cells

To purify HCs, we used a transgenic mouse strain expressing GFP under the control of the *Pou4f3* promoter. In this strain, the GFP signal is specific for cochlear inner and outer hair cells (IHCs and OHCs) and for vestibular HCs (Fig. 1*A*; Keithley et al., 1999; Huang et al., 2013). SCs, which include supporting cells in the sensory epithelium and nearby cells of the inner ear epithelia, were not fluorescent. We dissected the sensory epithelia from the cochlea and utricle at four stages of development—E16, P0, P4, and P7—which correspond to ages before, during, and after acquisition of mechanosensitivity. The cochlear epithelium was trimmed to include the organ of Corti, the spiral limbus, and basilar membrane but not spiral ganglion or lateral wall, and the utricular epithelium was trimmed to the edge of the macula (Fig. 1*B*). Cells from cochleae and utricles expressing GFP (GFP⁺)

were separated from GFP⁻ cells using enzymatic dissociation followed by FACS. The strong GFP signal in HCs and the size differential enabled specific separation of the HCs from SCs (Fig. 1*C*). Flow cytometry showed that the strongly GFP⁺ HCs constituted 1.2 \pm 0.2 and 0.30 \pm 0.08% of all cells in the utricular and cochlear samples, respectively. The number of cells harvested for each sample is indicated in Figure 1*D*.

Transcriptomes of the purified HCs and SCs were then studied by HTS. To quantify coding RNAs accurately, polyadenylated mRNA was amplified and 3'-enriched transcriptome tags were converted into nondirectional cDNA sequencing libraries. Each of 16 samples (HCs and SCs from cochlea and utricle at four developmental stages) was sequenced to a depth of 40–100 million reads.

PCA

Gene expression varied widely across the 16 samples. To understand the primary determinants of gene expression, we used PCA to identify the drivers of differences. The normalized GFP⁺ and GFP⁻ matrices were merged based on gene names; the merged matrix was then analyzed by PCA. The first three principal components explained >50% of the variance. A biplot of principal components 1 and 2 is shown in Figure 2A. HC samples are green and SC samples purple; samples from cochlea are in dark colors and utricle in light colors. The first component (PC1; accounting for 22% of the variance) is strongly associated with the cell type: all the SC samples (left) are separated from all the HC samples (right). The second component (PC2; accounting for 17% of the variance) is loosely related to the developmental stage, with the oldest stages (P4 and P7) represented at the top of the plot and P0 at the bottom. The third and subsequent components do not show obvious correlation with identifiable factors, suggesting high complexity of gene expression patterns in HC and other cells in the inner ear during development.

Reproducibility of expression data

To study the widest range of cell types and developmental points, we did a single set of four RNA-Seq experiments at each age. To understand whether duplicates would produce the same results, we repeated the experiment at one age using a second mouse strain in which the fluorescent protein tdTomato is expressed under control of the *Gfi1* promoter (Gfi1^{tm1(Cre)Gan};R26^{tdTomato}). We dissociated and sorted cells from P0 mice using FACS as before, but with settings appropriate for tdTomato fluorescence. The experiment was run in duplicate, with independent dissections, sorting, and RNA-Seq. RNA-Seq was highly reproducible. Technical replicates obtained by sequencing the same library multiple times showed over 95% correlation. RNA-Seq results of biological replicates in P0 Gfi1^{tm1(Cre)Gan};R26TdTomato HCs and SCs in cochlea and utricle at P0 were correlated by 84-93%. PCA confirmed the reproducibility among samples from the same cell type, age, and tissue source, even those from different transgenic mouse strains (Fig. 2A). Data from the P0 tdTomato experiments are represented in the PCA plot (Fig. 2A) as "-T," with the duplicates denoted as -T1 and -T2. For each cell type, duplicates tend to cluster with each other in the PCA plot, and they cluster with the data from GFP-expressing mice. Although there is no perfect overlap, these experiments provide confidence that the patterns of gene expression during development are generally reproducible.

Figure 1. FACS purification and RNA-Seq results. *A*, GFP signal in transverse sections of cochlear and utricular HCs from P4 Tg(Pou4f3-*Is*/1-eGFP) mice. Note the specific GFP expression in cochlear IHCs and OHCs. Supporting cells and other SCs are not labeled. DAPI and fluorescent phalloidin counterstains outlined surrounding areas. *B*, Dissected tissues used for FACS at P4, shown as combined fluorescence and bright field. Hair cells expressing GFP are green. Cochlear samples included hair cells and supporting cells of the organ of Corti, spiral limbus, basilar membrane, part of the spiral ligament, and spiral ganglion neuronal processes. Utricle sensory epithelium was trimmed away from crista ampullaris, vestibular ganglion, and the roof of the utricle. *C*, FACS analysis of dissociated sensory epithelia. Gating on GFP + DAPI - cells, coupled to the size of the cells, allowed specific separation of the hair cells from surrounding cells and exclusion of dead cells and doublets. To avoid contamination, only cells exhibiting the highest intensity levels in the GFP channel were harvested as GFP + cells. GFP - cells were those with low GFP fluorescence, as delineated. *D*, Number of GFP + and GFP - cells harvested by FACS at all ages in cochlea and utricle.

Genes enriched in HCs

We examined the differential mRNA expression in HCs and SCs by pairwise comparison between the GFP⁺ and GFP⁻ samples using the normalized read counts at four ages. The number of reads reflect the abundance of mRNA in each sample. These were divided into three different categories of genes: the HC-enriched genes (green; GFP⁺/GFP⁻ > 2), the SC-enriched genes (purple; GFP⁺/GFP⁻ < 0.5), and the nonspecific genes (black; 0.5 < GFP⁺/GFP⁻ < 2; Fig. 2*B*, *C*). Among the 20,207 annotated mouse genes, only 2008 genes were not expressed (<15 total read counts). Among the remaining 18,199 genes, 5430 were found to be preferentially expressed in HCs (including the genes with no reads in the SCs) and 3230 in SCs; 9539 were expressed in both.

Differences between cochlear and utricular HCs

To identify genes encoding proteins important for mature HC function, we divided them further by expression in cochlear HCs,

utricular HCs, or both (Fig. 2D). We selected 916 genes by choosing those enriched $4 \times$ with FDR < 0.05 in postnatal (P0, P4, and P7) cochlear HCs compared with postnatal cochlear SCs, or enriched in postnatal utricular HCs with the same criteria. Utricle HC reads were plotted against cochlear HC reads for each gene. Genes were marked as cochlea-enriched if cochlear reads were $>5\times$ utricle reads (222 genes; dark green), or as utricle enriched (41 genes; light green), or as expressed in both (653; black). Selected genes are labeled with gene names. As the cochlea sample is dominated by OHCs, some of these genes may be involved in functions unique to OHCs, such as the generation and regulation of electromotility. Indeed, one of the most differentially expressed genes is Slc26a5, encoding prestin. Genes highly enriched in postnatal utricular cells include those encoding axonemal dyneins (Dnah5, Dnah9, Dnah10, and Dnah11), a flagellar protein (Tekt2), and a centrosomal protein (Ccdc81)-consistent with the presence of kinocilia in mature utricular but not cochlear HCs.

Figure 2. Tissue and age differences in expression. *A*, Principal component analysis plot of all 16 samples (light colors for utricle and dark for cochlea) for all 20,207 genes represented in the NCBI build 37/mm9 mouse genome assembly. PC1 correlated with cell type: GFP⁻ (purple) to the left and GFP⁺ (green) to the right, and PC2 correlated approximately with age. Most points are expression from *Pou4f3-eGFP* mice; those denoted as -T1 and -T2 are from mice expressing tdTomato under control of *Gfi1. B*, *C*, Analysis of the HTS results. Differential expression in GFP⁺ and GFP⁻ samples was assessed using the average number of reads at all four ages. Only genes with a minimum of 15 total reads across all samples were considered. There were 5364 enriched in hair cells (GFP⁺/GFP⁻ > 2), 3230 genes were enriched in surrounding cells (GFP⁺/GFP⁻ < 0.5), and 9539 genes were nonspecific (0.5 < GFP⁺/GFP⁻ < 2). *D*, Differential mRNA expression in postnatal utricular and cochlear HC samples. Genes included in this plot were at least four-fold enriched in HCs compared with SCs in either utricle or cochlea (or both). HC genes preferentially expressed are black.

Gene-expression analysis

To determine the specificity of the HTS results, we examined the expression patterns of genes previously known to be enriched in HCs relative to SCs. Figure 3 shows, for selected genes, the number of reads in utricular and cochlear HCs compared with SCs at each age. Transcripts from well known HC genes such as *Atoh1*, *Gfi1*, *Slc26a5*, *Tmc1*, *Lhfpl5*, *Pcdh15*, *Fscn2*, and *Chrna9* were found, as expected, to be highly enriched in HCs (green bars) compared with SCs (purple bars; Zuo, 2002; Peng et al., 2011; Schimmang, 2013). The enrichment of each gene in HCs, averaged across organs and ages, is indicated by the fold-change (FC) value (FC = GFP⁺/GFP⁻), which ranged from 35 (*Pcdh15*) to 1395 (*Gfi1*), and by the FDR (Fig. 3). Similarly, genes known to be en-

riched in SCs, such as *Wnt5a* and the deafness gene *Coch* (Robertson et al., 2001; Qian et al., 2007), have few reads in GFP⁺ cells (Fig. 3). Fold-change values for these two are 0.06 and 0.008, respectively.

These data, from developmental ages E16 to P7, reveal the time course of gene expression in addition to enrichment in different cell types. For instance the transcription factor *Atoh1*, involved in the differentiation of HCs as early as E12.5, is known to be downregulated at postnatal stages when HCs mature (Bermingham et al., 1999; Scheffer et al., 2007a). As expected, HTS data show expression of *Atoh1* decreasing between E16 and P7 in the utricle and between P0 and P7 in the cochlea—consistent with the earlier maturation of the utricle compared with the cochlea (Fig. 3).

Figure 3. Representative HTS expression profiles for *Slc26a5* (prestin), *Atoh1*, *Tmc1*, *Gfi1*, *Fscn2*, *Pcdh15*, *Lhfpl5*, *Chrna9*, *Coch*, and *Wnt5a*. Histograms display the normalized number of reads in hair cells (green) and surrounding cells (purple) in samples from the cochlea (co; dark colors) and utricle (ut; light colors) at ages E16, P0, P4, and P7. Indicated for each gene are the FC representing the GFP $^+$ /GFP $^-$ counts ratio and the multiple test adjusted FDR determined by the Benjamini–Hochberg procedure.

Purity of the FACS HCs

We examined differential expression in GFP⁺ and GFP⁻ cells of genes known to be expressed in HCs and supporting cells. In particular, we looked at the *Notch*, *Hes*, *Jag*, and *Delta* genes, which are Notch pathway effectors that determine the mosaic pattern of the inner ear sensory epithelia. As expected, *Jag2* and all the *Delta-like* (*Dll*) members were highly enriched in GFP⁺ cells (Fig. 4A). *Notch1*, *Notch2*, *Notch3*, and *Hes1* were enriched in GFP⁻ cells. *Jag1* and *Hes5*, previously shown to be expressed in both HCs and SCs (Zine et al., 2000; Hartman et al., 2009), had a broad expression pattern in our HTS data. Thus the dissociation protocol apparently separated HCs from SCs.

We also used gene expression to assess the purity of the samples. HCs and supporting cells are connected by both tight junctions and adherens junctions, so they can be difficult to separate. Despite the mesh filtering before FACS and the use of a size criterion to avoid doublets of cells during the sort, there might be a supporting cell contamination among the purified hair cells. At P7, when adherens junctions were mature and contamination might be highest, we identified nine genes that had at least 60 total reads in the two GFP⁺ samples and had between 100- and 270fold more reads in the GFP - samples. These include Ptgds, which encodes prostaglandin D2 synthase; Col1a2, which encodes collagen type 1a2; Dcn, which encodes the collagen-associated protein DECORIN; and Coch, which encodes the surrounding cell protein COCHLIN (others were Atp1a2, Car3, Lef1, Apod, and Apoe). If there was significant contamination from SCs, SC genes would have been detected at higher levels in the GFP⁺ samples. Suppose, for instance, that a gene is expressed exclusively in SCs and that there are 8000 reads for that gene in the GFP - sample. If there is 1% contamination of SCs in the GFP ⁺ sample, we would expect 100-fold fewer reads in the GFP⁺ sample, or 80 reads. Because we found at least nine genes with >100-fold fewer reads in GFP⁺ than GFP⁻ samples, we can conclude that the HC sample is at least 99% pure (1 - 1/100).

A similar analysis found 14 genes (*Ocm*, *Smpx*, *Espnl*, *Tmc1*, *Srrm4*, *Calb1*, *Strip2*, *Kcnmb2*, *Pcp4*, *Pvalb*, *Nrxn3*, *Mreg*, *Apba1*, and *Bdnf*) that had 100- to 1000-fold more reads in the GFP⁺ than GFP⁻ samples at P7, indicating that the SC sample is also at least 99% pure.

Validation of RNA-Seq results by quantitative PCR

To validate the differences in expression among cell types and developmental stages revealed by HTS, we used quantitative PCR (qPCR) to examine the expression of selected HC genes (*Pcdh15*, *Pou4f3*, *Cdh23*, *Atoh1*, and *Myo7A*). In HTS profiles from the cochlear samples from E16 to P7, these genes were found to have a significantly differential expression pattern (Fig. 4*B*). qPCR on the same samples also showed differential expression and good agreement with HTS data. Similarly, we studied the expression of genes expressed in the prosensory domain during early development that later becomes supporting cell specific, such as *Prox1*, *Cdkn1b*, *Isl1*, and *Sox2* (Chen and Segil, 1999; Bermingham-McDonogh et al., 2006; Hume et al., 2007; Huang et al., 2008). Both HTS and qPCR showed a relative decrease in expression in GFP⁺ cells from embryonic to postnatal cochleae, as expected (Fig. 4*B*).

Deafness genes

Mutations of genes that are uniquely expressed in HCs are likely to cause deafness. We ranked, by enrichment level in HCs, the 18,199 genes expressed in our samples (Fig. 5A). We then identified the 112 known syndromic and nonsyndromic deafness genes

Figure 4. Validation of the HTS results. *A*, HTS expression profiles at all ages of key proteins of the Notch pathway. The Notch receptor genes, *Notch*, *1*, *2*, and *3*, as well as the downstream effector, *Hes*, were mostly expressed in surrounding cells (purple). *Hes*, *5* and *Jag*, *1* had nonspecific expression (black). The ligand-encoding genes, *Jag2*, *Dl*, *1*, *Dl*, *3*, and *Dl*, were enriched in hair cells (green). *B*, HTS results (blue) compared with qPCR (gray). The average counts and qPCR results in PO, P4, and P7 cochlea samples relative to the E16 sample were plotted as fold change.

(http://hereditaryhearingloss.org) and examined the positions of these genes within the ranked list. The deafness genes represented \sim 0.6% of the detected genes (109/18,199). We found that 50 of the deafness genes known to be HC specific, such as the Usher syndrome genes and myosin genes *Myo6* and *Myo7a*, were enriched in HCs according to HTS data. More than half of them (27) were included in the top 1000 genes of this ranking (Fig. 5*A*,*B*, first bin). With additional selection criteria, deafness gene candidates can be enriched further. For instance, if a search is restricted to those genes upregulated by >5× during development and sorted by the GFP⁺/GFP⁻ ratio, then 20 deafness genes are in the top 500, and 10 are in just the top 100. Genes differentially expressed in HCs are therefore a rich pool of deafness-gene candidates.

Similarly, more than half of the deafness genes enriched $>2\times$ in SCs, such as *Coch* and *Pou3f4*, were in the 1000 genes most enriched in SCs (Fig. 5*A*, *B*, last two bins). Genes most enriched in HCs or SCs are more likely to encode proteins with specialized roles in the inner ear and, perhaps, are more likely to produce only hearing and balance disorders if mutated, so are good candidates for deafness genes.

Discovery of new HC and SC genes

To provide insight into gene networks involved in HC development and function, we grouped genes with similar patterns of expression. Such grouping has the potential to identify narrower classes of genes than a simple enrichment as in Figure 3. We constructed relative mRNA expression profiles and used dChip to arrange the genes according to their expression pattern. The hierarchical clustering heat maps showed subsets of genes enriched in SCs, in all HCs, in cochlear HCs, or in utricular HCs (Fig. 6, Tables 1 and 2). A variety of expression patterns was observed and these match expression patterns of constituent genes when known (Zine et al., 2000; Zuo, 2002; Jones et al., 2006; Hertzano et al., 2007; Scheffer et al., 2007b; Cotanche and Kaiser, 2010; M.J. Shin et al., 2010; Peng et al., 2011; Yoon et al., 2011; Carlisle et al., 2012; Schimmang, 2013; Hereditary Hearing Loss Homepage, http://hereditaryhearingloss.org). For instance, some genes were much more highly expressed in HCs than SCs, and were expressed at the earliest ages tested (Fig. 6A). Among them are Atoh1, Gfi1, Pou4f3, and Lhx3-all transcription factors essential for HC development.

HCs become mechanically sensitive between E16 and P0 in the utricle and between P0 and P4 in the cochlea (Géléoc and

Figure 5. Deafness gene distribution. *A*, Expressed genes (total reads > 15) ranked in order of the GFP ⁺/GFP ⁻ read ratio at all ages. Green indicates the HC-enriched genes (fold change > 2), purple the genes enriched in SCs (fold change < 0.5), and black the nonspecific genes (NS). Known deafness genes are indicated in each category. *B*, Histogram showing the distribution of deafness genes relative to their GFP ⁺/GFP ⁻ rank at all ages. Each bin represents 1000 genes. The majority of deafness genes previously shown to be expressed in hair cells was found in the top 2000 genes, and deafness genes expressed in surrounding cells were found within the last 3000 genes.

Figure 6. Spatial and temporal expression patterns of genes by hierarchical clustering. Heat maps are shown for selected tree branches clustered by spatial and temporal expression patterns; red represents above-average expression levels and blue below-average levels. Each row represents a gene, and each column a sample. Plotted below each heat map are the average standardized gene expression values across samples for that cluster. Examples of genes in the duster are listed. The GFP + samples are shown in green and the GFP - samples in purple. Clusters represent embryonic and postnatal hair cell-enriched genes (*A*), postnatal hair cell-enriched genes (*B*), cochlear hair cell-enriched genes (*C*), utricular hair cell-enriched genes (*D*), and surrounding cell-enriched genes (*E*). See also Tables 1 and 2. Coch, cochlea; Ut, utricle.

Holt, 2003; Lelli et al., 2009). It is reasonable to suppose that genes critical for mechanotransduction are expressed in HCs but not SCs and are first expressed during those periods. Thus it was not surprising to find such genes enriched in HCs but not expressed early in the development of the cochlea (Fig. 6B). These include Cdh23, Tmc1, Myo15, and Kcna10, which are associated with mature HC function (Kawashima et al., 2011; Peng et al., 2011; Lee et al., 2013). Still others (Fig. 6C) were expressed only later in development, but only in cochlear HCs. Genes in this cluster may be associated especially with OHCs, as OHCs outnumber IHCs by three to one in the cochlear HC sample. Notable among these is Slc26a5, encoding the OHC motor prestin. A fourth cluster (Fig. 6D) is primarily expressed in utricular HCs. Some of these genes, such as Dnah5, Dnah10, Dnah11, and Tekt2 (Yoon et al., 2011), encode known components of microtubulebased cilia, and their presence in this group may reflect the retention of kinocilia in the utricle and their degradation in cochlea. Another cluster (Fig. 6E) is expressed at much higher levels in SCs than in HCs. These include genes known to function in SCs, such as Coch, Gjb2, and Notch2. Table 1 lists the genes in each of the HC clusters and Table 2 lists the genes in the SC cluster. The clusters shown are just a subset of all branches in a hierarchical tree, but they illustrate the potential to identify genes that may have similar functions in HCs at similar stages of development.

Validation with *in situ* hybridization and immunocytochemistry

To validate the tissue and cell specificity revealed by the normalized read counts and the hierarchical clustering, we performed in situ hybridization and immunocytochemistry for selected genes (FC > 90; FDR< 0.1). Based on HTS reads, gastrin releasing peptide (Grp) and glutaredoxin cysteine rich 2 (Grxcr2) were expressed in both cochlear and vestibular HCs (Fig. 7A, B). Indeed, in situ hybridization in the organ of Corti and vestibular epithelium showed high levels of message in the HCs. Striatin interacting protein 2 (Strip2) and leiomodin 3 (Lmod3) were predicted to be expressed only by cochlear HCs (Fig. 7C, D). With in situ hybridization we found message only in the OHCs of the cochlea and not in vestibular epithelia. Dynein axonemal heavy chain 5 (Dnah5) was predicted to be highly expressed in vestibular but not cochlear HCs and this was confirmed by in situ hybridization (Fig. 7E). Endomucin (Emcn) was predicted to be in SCs, especially of the cochlea. With in situ hybridization we found high levels in cells of the basilar membrane (Fig. 7F), which were part of the SC samples. Finally, Ptgds, encoding a prostaglandin D2 synthase, was predicted to be mainly in vestibular SCs. We found expression in the dark cells of the ampulla (Fig. 7G), which are involved in pumping K⁺ into endolymph. We also found Ptgds expressed in the stria vascularis of the cochlea, which is

Table it denes captessed by empty one and postnatal num cens, postnatal num cens, and antenna num cens as short in it is a	Table 1. Genes exp	ressed by emb	ryonic and pos	stnatal hair cells,	postnatal hair cells,	, cochlear hair cells,	, and utricular hair c	ells as shown in Fig. 6
--	--------------------	---------------	----------------	---------------------	-----------------------	------------------------	------------------------	-------------------------

Embryonic and postnatal hair cells							Postnatal hair cells	Cochlear hair cells Utricular hair		hair cells			
Rrupol6	Eml1	Canel	Fam70h	Cloc18a	Ermd4h	lfit1	Sk25a22	Ecin1	linc 80	Sk 16 a 5	Sain1	Irv?	Casala
Fam167a	Cvh561	Cupsi Fam154h	Gfi1 ^a	Slc18a1	Twf2	l cn14	1190002A17Rik	Pls1	4937417I16Rik	Tsnvl5	Syrp 1 Svcn2	Trtev1d1	Tekt4
Wdr31	Tenan13	4330021F22Rik	l hv3 ^a	Duv1c1	Tnhnh	(vn17a1	(Jed)	Nfkhih	Nos1an	CedeA0	Calca	A732A56N10Rik	Ddo
Fva4	Gahrh3	Fam183h	Arsl4	Kens3	Dvtn	Tas1r1	(130038G02Rik	Fam148c	Irrc67	Rnarin11	Dusn27	Foxi1	Gal
Impdh1	Gpr98 ^a	1700007K13Rik	Cdkl4	Pih1d2	Mvot	Tmem213	Morn2	Tmem173	Mvo15 ^a	Rsph4a	Adck1	1810041L15Rik	1700026L06Rik
Dach2	Cib2 ^a	Armc4	B230396012Rik	Ribc2	Dock9	Stk32c	Zfr2	4930429B21Rik	Adcv8	lp6k3	Grtp1	Abcd2	Cvp1a2
Rassf10	St8sia3	Lrrc46	Ttc24	B4qalt5	BC048546	A530016L24Rik	Selm	Pip4k2a	D10Bwq1379e	, Zcchc18	lcos	D11Bwq0517e	Ptpn22
Mpp7	Ttc21a	Wdr78	Casz1	Gm5567	Kncn	Zmynd12	Sema6b	, Jakmip1	Ttc30b	Lbxcor1	Cdh7	Wt1	6330439K17Rik
Frmd5	Snap91	Mtap9	Gm906	C230081A13Rik	Nod2	Bend6	Tuba4a	Ablim2	Txndc6	Tspan2	SIc34a3	Ccdc151	Kif6
Pkp2	Parp6	Kcnh7	Chgb	Kifap3	Dbndd1	Ttll3	lmmp2l	Mtap7	Ryr2	4930528F23Rik	Ucp3	Dscam	Slc17a8
Fez1	Tspyl4	Ccdc68	Lmod1 ^b	Pgm2l1	Hist3h2ba	Amph	Tnfaip8l1	Spock1	Wdr16	1110004E09Rik	Klrk1	Tmem130	4430402118Rik
Me2	Wwc1	Wdr63	Rab11fip1	Wdr19	Nupl2	Accn3	Fzd6	Acpp	Agbl4	Awat2	Slc39a12	1700028P14Rik	ld4
Slc6a17	Prepl	Tcp11	Mfsd6	Sp110	Ppp1r3f	Nat14	Tceal5	Elfn1	Dnajb13	Slc5a12	Acad11	Ccdc113	lrak2
Ankrd24	Raver2	Chrna9 ^a	Plce1	Phtf1	Rabl2a	Stxbp1	1700030J22Rik	5730410E15Rik	Dysfip1	Rph3a	Pkhd1l1	Fbxo32	Ces2
Fam148b	Txnrd1	Cldn9	Муоб ^а	Gm88	Hrasls	0610010012Rik	Uhmk1	Clic5 ^a	6430537H07Rik	Ugp2	Defb5	Brip1	Gm595
Cabp4	Ctnnd2	Dtna	Smpx	Serf1	Slc4a8	Hagh	Dyrk3	Rnf128	Tekt1	Sgsm1	Fabp12	Dnahc5 ^b	Lrrc27
Fam92b	Tmtc4	A730017C20Rik	Acss2	Ankrd42	Lmo3	Mmp24	Rem2	Ccdc30	Cxcl14	Lrtm2	Ghsr	Ccdc147	Ulk4
Dner	Myo16	Enkur	Atp6v1a	Tctn2	Rab36	Chchd10	Clstn3	Мусьр	Lrguk	Ubxn11	Gpr55	Rab3c	Car8
Cetn4	Epb4.115	Tmem30b	Ankrd22	Ttll7	Nrip3	Ctsf	Fbxo27	Osbpl3	4933413G19Rik	Fcho1	Slc9a2	Rxfp2	4932443119Rik
4930588N13Rik	Syt14	Ush1g ^a	Dusp14	Dmxl2	Ubxn10	Mrps6	1810019J16Rik	Rtdr1	NhIrc2	Tmc1 ^a	Fhit	Tekt2	Slc15a5
Morn5	2310030G06Rik	Spag6	Lrp11	Thnsl1	lgsf21	Rsph9	Mtmr7	Vwa3a	Otof ^a	Pcp4	Kndc1	Nxf3	Styxl1
Fbxo16	R3hdml	Zfp474	Gm1322	Thsd7b	Megf11	Morn1	1700040103Rik	Relt	1700003M02Rik	Arv1	Fam160a1	1700019L03Rik	Gm14461
Spint1	Spa17	Atp11a	Xirp2 ^a	Dgkg	Syp	2210020M01Rik	Crb3	Wee2	Scn3b	Strc ^a	Gcnt2	Fhad1	Mdh1b
Ssx2ip	Ppp1r3d	4930430F08Rik	Cpeb3	4930426L09Rik	Erc2	Efhc1	Nphp4	Kcna10 ^u	Chrnb2	Mtmr11	Htr1a	Gm114	Csmd1
Fmn1	Rimklb	Ercc6	Gramd1c	Gm70	Pcdha2	Rsph1	Gnmt	Bcl2l14	Ccdc65	Trim45	SIc39a2	Plac11	Trim9
Atp8b1	2900062L11Rik	Pacrg	Kcnab2	Artn	Ldhc	Fry	Gpr120	Tbc1d7	Ccdc96	Cd164l2	Adamts13	4930506M07Rik	Popdc3
2310030N02Rik	Herc3	Ap3m2	Nek11	Imem184a	C//080	Nmnat3	Nipal3	Serpina3g	Fbxo36	Cyp4t39	Xkr9	Норх	4/32415M23Rik
MIIt4	ICA II	Dynirb2	lomt"	MODKIZD	PpmTe	Veph I	Ijap I Gart	1/00061J05KIK	Sh3gl2	Art3	D630029K05KIK	Perp	LITCS I
Pawr D= 6102	lldr I	Dctn3	Fam65D	PICh2		Cpne9	GSG I	Anktn I	Meig I	PKIG	Gm43/1	Dera	Arid3c
KIII 162 Dimum 2	KUII 12 Alian 0	пъричі Милодо	5110045021KIK Cdmd1	Fulli 1903		пиирг Гругод	THIERIZ TO	POU412	LIIC43	GIII9047	Cyp2J12 5100=	INKX3-1	Case I
PUPINZ 7dbbc12	АКИРУ ЛОЗЗЛЭЕІЗЛОН	Mact2	Gupu I McF3I	Pyuniz Unc70		FUXU2	FUXUIS	Cucilu2u4	4930434E21KIK	nsu1/0/ Pab2in	STUDY	LUC 100042430	Uyucz Linh
Lunners Hook1	4952425124NIK 1.db3 ^b	Nysis Dinra ^a	INICIZI Tmom183a	UIIC/9 Durl1		Cyll Pabl5	LUXZ ClinA	Diluju4 Eno?	4950579J09NIK 1700003E16Dik	Aftenh	Sylo Muchnan	Ficilus Dnahc11	црп
lrn8	Arl6	Merh?	Galata	Sann?		Rah3a	Kif27	Cdc1	F230025N22Rik	Hsd17b1A	(alb1 ^a	Crtac1	
Sall3	Prnh2	Chst4	Gm757	Sypp2 (rtam		Cln6	Rah3h	Cusi Cub561d2	1700024G13Rik	(dk5ran?	Fam40h ^b	1700013E07Rik	
Svt7	(vfin2	Cvld	Cede 103	Grn		Ormdl3	Cacna1d	Trnm?	Cede87	5730508B09Rik	Sema5h	Kcne2	
Vwa5b2	Lmo7	Gm5111	Fscn2 ^a	Rffl		Stard10	Tom112	1110032A03Rik	Cvb5r2	4930558C23Rik	Rassf4	Tnr	
Espn ^a	Strbp	Mvo3a ^a	Calm2	Acs16		5930434B04Rik	Gad2	Krt222	Armc3	Tmprss7	Snph	1810046K07Rik	
, Mtaq2	Trit1	Faim2	Rnf157	Mfng		Wbp1	Pcsk1	2610034M16Rik	Efcab6	, Nceh1	Tesc	Zbbx	
Clrn1	4921525H12Rik	Pitpna	1700009P17Rik	Btbd9		Rhpn1	Aacs	Gstm7	E230019M04Rik	2510049J12Rik	Umodl1	Gm101	
Sult4a1	Evl	Calml4	Kif9	Acot7		Aig1	1700017N19Rik	Cnnm2	Tekt3	Epn3	Scn1b	Ak7	
Myt1	Rims2	Chrna10	Lhfpl4 ^a	Chchd6		2310047B19Rik	Chia	Adprhl1	Ankrd5	Elovl4	1190003J15Rik	Slc17a2	
Nhlh1	Nefm	Calm1	Otud3	Gpr4		Usp20	Dpf3	Fcrlb	Ccdc11	Cdh15	Lmod3 ^b	Ccdc19	
Hpcal1	Slc8a1	Pou4f3 ^a	Atad4	Neurl1a		Hist3h2a	Fgf21	Kcnj4 ^a	Dnali1	Cdkl1	Slc26a5 ^a	Zcchc12	
Tcerg11	Nrxn3	Camk2b	Rab15	2210411K11Rik		Zfp385a	Nppa	Calb2 ^a	Gca	Ttc39b	Zfp750	Krt20	
Cbln1	Pcdh15 ^a	Tmhs ^a	Eps8l2	Nup210		Padi2	Shank2	Chrna1 ^a	Gm11992	Wdr7	Rimbp2	Gbx2	
Kcnmb2	5330437102Rik	Gpr152	Gpr156	Hs3st6		St3gal5	Ccdc60	Apbb3	6030429G01Rik	\$100a1	Actr3b	Lct	
Lmo1	Ube2u	Ap3b2	Lrrc48	Ubash3b		Gm166	Fhod3	Fabp1	Ccdc108	SIc7a4	Baiap2l2	Zp3	
Tmem41a	Barhl1 ^a	Espnl ^a	Fam78b	Pcyt1b		Ptpla	Ksr2	Abcc8	Dnahc9	Tmprss3	Gpr151	Gck	
Stmn3	Dlk2	Acbd7	Grxcr1 ^a	Prkcz		Coq4	Lipm	Lrba	Dnajc5b	Sh2d7	Parp1	Stox1	
Disp2	Ush2a ^u	Apba1	Anxa4	Uckl1		lca1	Btn2a2	4930579G22Rik	1700012P22Rik	Myo7a"	Chst13	1700026D08Rik	
Ckmt1	Nrsn1	Fank1	Mogat1	Brsk2		Nf2	Fn3k	4930455F23Rik	Nek5	Tmem107	Gng8	Prr15	
Gdap111	Mreg	Me1	Hebp2	Scg3		SIc24a3	Colq	Grxcr2°	Cartpt	Ptplad1	Htr3a	Lrrc18	
Snap25	Dscaml1	Cdkl2	Emb	Sncg		\$100a13	B3gnt4	AI428936	Lrriq1	SIC9a9	Mcoln3	MICT	
Hecw1	Chga	Cetn2	KIhI32	DII4		Paqr9	Cdh23°	Lrrc30	Ccdc135	Imcc2	4432412L15Rik	Spag16	
MYCI I	Mgat50	Fam49a	Stac C C	Kem I		Dero25	BDS I	Car/	Agdiz	NDAS	PTTKZ	Dnanciu	
SIX I Dueli 1	ISUUUU IA IUKIK Cdan 1	PUKS Nmor	SLYS Here 2	23100/0L09KIK		Cpe04	IVIYI5 Tuoia ^a	Intent 179	D130043KZZKIK		Doguilo	DIIIKII Teda	
DISK I	Guup I Trim 24	NIIICO Efech10	Tranne?	TISL2II3C2		UCIII 2110006E14Dik	11111E 4120E71112Dik	PCSK9 Dtnn2	1/00001L19KIK Mank1E	SIIZU40	Dhaser	ITUII Art1	
Allos	(hma ^a	EICUUIU 1700016V10Dik	ITUPPC2	CCUC92 Trim71		3 10000E 4KIK Cldn 14	04303/ILI3KIK Drn 13	PUPIIS Dop1r14d	Wupk I S Hudin	Cara IU Rab 25		AILI Dievel2	
CH2842	Cilling Rasd?	1/00010N19KIK Ttc20	Atn10d	sall1		Cull 14 Trnn1	Maneal	י אין אין אין אין אין אין אין אין אין אי	riyuni Krt7	nuuzs Tmom ^o		r icxuz Cedezz	
UILZOUZ Phtf7	nusuz Iaa2 ^a	11(2) Slc8a7	πιμτυu Galnt13	Juli I 7fn607		Tmnrss6	Toon	41204/UP1/KIK Melni	Irre6	ninenno Dla?		Тпо	
1 11UZ ny2	Juyz Dfnh59	MIf1	RCORORAT	21µ097 1v6 h		Atn1h1	י אין אי Prrt 3	D7Frtd4A20	Sen11a	uy∠ 1700001€03Rik		,20 23000000105Rin	
Nefl	Skn1a	Flmod 1 ^a	llsn46	Mtan?		Nme7	Dlaan3	Zfn365	Necah1	(ahn)		2310021H06Rik	
Atn2h2	2310046K01Pik	Gm904	Arhadia	Svni2		Srd5a1	laca	Pclo	Plekhf2	Cne		D630023F18Rik	
Pvalba	Atoh1 ^a	1700027A23Rik	Cacnb2	Ras11		Ablim3	Lrrc56	Spef2	Mak	DvnII2		Dbnht2	
Oscp1	4932411E22Rik	Gm1060	Kcnb1	Tcte2		Atp2a3	Gpx2	Dnaic2	Iqub	· ,		Gm879	

Genes near each other in a column have similar expression patterns during development. "Genes well known in the inner ear. "Genes validated here by ISH or immunostaining (Figs. 6 and 7).

Sgms2	Esam	Birc3	Elk3	1116	Sntb2	Dse	Vwa5a	Tgfb1i1	Slc16a4	Fabp7	Sfrp4	Gper	Ppp1r1b	Agt	Sh3pxd2b
Tspo	Plod1	Tek	Tspan9	Ptgfr	Fbn2	Fzd1	Dcn	Kctd12b	Tor3a	Rasa3	Cldn19	Ccdc106	Casp12	Htra3	Aebp1
ll18	Anpep	Gm6041	Dclk1	Cd68	Fstl1	Notch2 ^a	Dmd	Prrg3	Angptl1	Kcnk5	ltga7	Eml3	Cd79a	Notum	Blvrb
Nt5e	Pdlim2	Cdh5	Lox	Parp9	Tnfrsf19	Lypd6	Plp1	St3gal6	Fgfr4	Megf6	Filip1	B3gnt9	Egfl8	Ltbp4	Actg2
Sidt1	Plekho2	Nrn1	lfitm2	Slc12a4	Atp10a	Prrx1	Fam181b	Gng12	9030625A04Rik	ltga1	Gpr37l1	A730069N07Rik	Sat1	Lrrtm1	Wnk4
Gbp4	Cd52	C630043F03Rik	Athl1	Fam176b	Rerg	Canl1	Tqfbr3	Snx7	Mpp1	Nes	ll1b	SIc27a6	Sfrp5	Angptl2	Pde8a
4931408A02Rik	Arhqdib	Sulf1	Lgals1	Gstt1	- 1110021L09Rik	Tns3	Col6a1	Sh3bp5	Ahr	Bcl2l12	Stfa2l1	Junb	P2rx7	Wtip	Crip1
Copz2	Ecscr	Tcfap2a	Gabrb2	Abca1	H19	FbIn2	Gas2l3	Мррб	Gria3	lqsf10	Fpr2	Sorbs3	Gatm	Lgals3	Cpz
Cvbb	Srnx2	Rens2	Vstm2a	A2m	Atn1h3	Sven1	Fosl2	Fnhb4	Guev1a3	Gadd45b	, Stean4	B2m	Scn7a	(d53	, Fhd2
Nnnt	Grn	Fhn1	l hfn	Trf	lfnar1	Cvfin1	Cdh19	Thc1d2h	Lef1	Wdr86	(d36	Irf1	Col15a1	lafhn7	lafbn6
Taaln	l hn	Hs3st1	Itab5	Col4a5	Mhnl2	Tax1bn3	Hsna2	Kank2	Met	Icost	Cdkn2c	Ctsk	Maa	1v86	(a)
Fam55h	AloxSan	Rhnms	Samd4	Tmem119	Gnail	Tead1	lamc1	Teche 74	Camk1d	Tcira1	SIc30a10	Ontn	Mbn	Infrcf11a	Nlan1
Rinl	Lamh?	Plokha?	(nno)	Tenan18	ltah1	Gnal	Sdr7	Men	Prkch	TlrA	Rah38	Ptnrc	RC100530	Gah3	Mmn25
Fam101a	Mula	Slc25f1	Ednra	Sat 2	Ank?	Rcu1	Mmn?	Wrn	R(057170	Rhhdf1	Place	Infref11h	Stfa1	KIF15	Pdafra
Rac10	Pvn	7fn703	Movd1	Sult5a1	Slc16a1	(nn)	Tmom/5a	RAnalth	Sacd	Arhaofh	Pon3	Rdf	Emr1	1/171	Pance?
Nac)	I All	Dhn1	Empl2	Jun J	Gnm6h	Dmn5	Ucd17b11	Diguno	Elnc	Page	Pacefs	Teffs	C10049	Abcall	Mt2
Husz	Aucyo Dtkn	NUP I NA20107012Dik	Nnu	Ccarf)	Man1c1	Vdalc?	Dhor	Dilliu4/20	Anya?	Varah?	Cave	Tmprcs	510000	Diak	WILZ SucdS
neniyii Cl-A-1	NIKII Chur	A45010/015NIK	npy	Dama 2	Mullici Flavde	NUEICZ	MIUC	riksipi Caria 1	Alixus	Culo	JUXO		510009	PIEK	JUSUJ Ten el
510401	CISZ	Entpal	DDI	Kamp2	EIOVIS	miap2	ALPTAZ		FIII	C(112	Angpt2	Lairi	Txnip	Alaniai	
Ctse	EIOVII	SICIAS	Itins	KNTI30	Cytsb	Eng	C01903	INKS I DP I	Gpr1//		ваїар2	Pygm	CP	KITC3	FNOGI
Gypa	C1300/4G19KIK	Naich	Bace2	FgTr2	Ca200	Arap3	Cytip	Stasia i	РКа2	INT	Ca48	KINAC/A	Myrip	4930539E08KIK	Ppargcia
lrf8	Ndrg2	Rsad2	Col8a1	Rhou	Epb4.112	Pou3f4"	Trim30	SIc5a7	Cdh10	C1qtnf1	Lst1	Ccl6	Enpp1	Olfml1	Arhgap30
Osbpl5	Depdc6	<i>Gpm6a</i>	Kank4	Ppp1r14c	9030420J04Rik	Col12a1	Ctss	Prdm1	Nmi	Col24a1	Slc7a7	Msr1	Abca8a	Сохбb2	E130203B14Rik
Stard8	Arhgap19	Cobll1	Tmem176a	Cav2	Cnn3	Lpp	Serpinb1a	Twist2	Rnf43	Cxcl1	Stk17b	Fcrls	C5ar1	Ggct	Cyth4
Slc43a3	Chl1	Gbp6	Arhgef10	Scd1	Cpne3	Epb4.111	Lyz2	Gpr88	Sertad4	S1pr2	Adam23	Tnmd	Inpp5d	Hexb	Fcgr4
TagIn2	Stat6	Dgka	Capn1	Kdelr3	Tcf7	Sema5a	Cd3	Rnase4	Trpc3	Large	Matn2	Rarres2	C1qtnf2	Megf9	Stab1
Git1	Sema3b	Mtmr10	Fkbp7	Nek6	Akr1b8	lgf2	Cd4	Cd83	Tmem100	Ndp	Ctso	Plxnb3	Kcna1	Car11	Gpr183
Gpx7	Stat5a	Ms4a6c	Fkbp14	Foxc2	Trip6	Cldn11	Chpt1	Emp2	Edar	Gria4	ll1rap	Gm525	Prx	Cd44	Klk8
Tnfrsf1a	Islr	Stxbp6	Nqo1	9430020K01Rik	Bgn	Adamts1	GIrb	Rgs5	Gm12824	ltga6	Aatk	ltgb2	Wnt6	Rarg	Rps6ka4
Aspn	Pld2	Mpeg1	Luzp2	Gdf10	Gata2	FbIn1	Sepp1	Rcsd1	Amotl1	Stambpl1	Stard5	1134	Cd14	Fam105a	Slc16a13
Gcom1	Rcn3	Megf10	M6prbp1	Ddr2	Lats2	Reck	Ranbp3l	9230105E10Rik	Smarca2	Cntnap4	Mfsd7c	Sod3	Nfkbid	Lgi1	Cfp
Pip5k1b	Smo	Cpm	Arl5c	Tgfbi	lqgap1	Emp1	Hbegf	Col5a1	Adamts5	Mustn1	Gje1	Piwil1	Gm5483	Fmo1	Prrx2
Sncaip	Rhod	Slco2b1	Klf10	Aard	Ets1	Arhgap29	Рсса	Enpep	Rftn1	Tie1	Fyb	Klrb1a	Slc4a10	Lrrtm2	Abcd1
Cyp2d22	Cd248	Slc2a10	Sostdc1	Fam114a1	Col5a2	Zic2	Gem	Ppfibp1	Kcnj8	Chrd	lfi27l1	Dusp15	Abhd3	ReIn	Cited1
2610204M08Rik	Cercam	Klf6	Gfra2	Serpinf1	Rab12	Col23a1	Maf	Bambi	Trim12	ltga8	Kcnrg	Vwa1	Pmp2	Fam19a1	Fxyd5
Fads3	Nudt19	S100a16	Ldb2	Rqs2	lqfbp4	2810055F11Rik	Wnt5a	Gnq11	Edn3	Sh3d19	Prkcdbp	Ccl7	Mal	Atp10b	Lcat
F3	Mmp15	Кспаб	Postn	Timp3	AxI	Cvp1b1	Zfp36l2	Stard13	Hbb-b2	Hspb1	Tvrobp	BC064033	Kcni10	Chrm1	Omd
Vat1l	Mtan7d1	Grik2	Aldh1a2	Crtan	Tsnan7	Cnnv4	lam3	Sertad1	Kenn3	Tcea3	Rit2	Ms4a7	Plln	Gm106	
Amiao2	Oaf	Tiam1	Scara 5	Col1a2	ltm2a	Rhnms2	Npl	Drn2	Plekhf1	latn	Nr4a2	Clac	Itab 3	Metrn	
Faf14	Senn1	Pdnn	Palmd	Otor	(daan	Arhaan28	Lama4	Incn1	Adrv4	Tmem150	XIr	(d)	Mt1	II15	
SlcA0a1	(sm)	Fmnl2	Chet1	0an	limc1	Chd3	Panya	lor3	Itaa5	lian1	Ducn1	Entrad 2	(saalnact1	Slc26a11	
Tlr3	Nnc2	Fvn	Col27a1	Vcam1	Nrn1	Mmn11	Col4a6	Fcer1a	(dc47en1	(ntn?	Idn2	Galat6	Mrc1	Trn63	
ling Umacc)	7fn456	ryn Caenalo	lcam1	Ednrh	Mutr1	Dom 1f	Arch	Tmom105	Conal	Crb14	Dyfn2	Rel2a1h	McAa6d	(47A	
1110022	Dtore	Eat1	laf1	Add2	Colfee	Mky	ЦIF	Itabl1	Ancdd1	lthn?	Comp1	Tfni7	Camen 1	(tla2h	
I I I UUSZEZSKIK	ripis Cor127h	Full FatA	Iyi i Gleo1e1	Auus	CUIDUZ Dic 2	IVIKX Ddafeb	ПII Ingr1	Anno	Apcuu I Cardh	LIUPZ	Ustrip i	TTP12	Sumsin Core	Cliuzu Tmc6	
LUIIIID Deart	201000200403	rul4	SILUTET	uypc Male 2	r155 N:11	ruyitu Amf2	Lpur 1 C-10-2	Арое Стал	Suluii Anharm 17	spurci i	INIKUIZ	Unip i	G1-26-2	1111C0	
riyi i Daalifa	2010002N04NIK	PIXUCZ	A950050L0/ NIK	Aluliz	IVIU I	AGIZ Chana	LUIOUZ	Siyii	Aniyupis	KIIID Cilin D	21µ30 541-5	0 <i>Ly</i>	51C5002		
Pea 15a	Cyth3	Lmoz	Anxa I	ытарь	Egnam	Sh3tc2	Annak	Ctsh 22	Cyba	Clip2	FDINS	Gari	Imem/I	HZ-Ad	
Imem 1760	кпод	1810055G02KIK	Metti/a i	INDA	C014a 1	Enpp2	PCOICE	Pmp22	Emilini	li i ura	Lama2	HNMT	LIIrD4	Cari	
Car3	Capns1	Epdr1	Pltp	FKDp10	Dtx3I	Co19a1	Col14a1	Fcgrt	Hmha1	AOC3	Egr2	A330049M08Rik	Sqrdi	Naprt1	
Htra1	Fxyd6	Tgm2	\$100a4	Lepre1	Slit2	Serpine2	Rab32	Timp2	Cd97	Lynx1	Pik3cg	SIc44a1	SIc7a8	Dct	
SIc24a6	Paqr4	Ccdc102a	Serpinb9	Acss1	Ppic	Naalad2	BC013529	Sparc	Tmem37	Cd37	Sla	Nr4a1	Thbs2	Ephb6	
Cebpa	Anxa2	Imem204	Apod	Ctdsp1	Serpinh1	5033414K04Rik	Cxcl12	Mpz	Mum111	SIc25a45	Prelp	Cxcl10	Nupr1	Nudt13	
Pdgfrl	Fxyd1	Emid2	Cxcl16	Lrp1	Kctd12	Col11a1	Maob	Sult1a1	2900092D14Rik	Dock2	Zc3hav1	Abca6	Slc13a5	Dock5	
Col16a1	Galnt4	Rftn2	Mxra8	Emp3	Tbx18	Rgs16	Mtap4	Nap1I5	Pou3f3	Serpina3n	Fap	P2ry12	Paqr6	ll11ra1	
Cryl1	C630028N24Rik	Mgst1	Cav1	Мдр	Ckap4	Sp7	Pmepa1	ltga11	Lrrtm4	Ddn	Col1a1	Cyp2j9	4632428N05Rik	Gjb2 ^a	
Lgi4	Esyt2	Nr2f2	Col4a2	Col2a1	ltpripl2	Aldh3a1	S100a11	Abcg2	Pdzd2	2010005H15Rik	Jam2	Emr4	Car14	Slc6a1	
Serping1	Mdfic	Scara3	Wif1	lfitm3	Rhoj	Selenbp1	4933428G20Rik	Leprel2	Spats21	Rbp4	Arhgap6	Adra2a	Adamts2	Cmbl	
Col5a3	Ttc23	Wisp1	Acot1	NbI1	Cald1	Adcy7	Adamts12	Epas 1	Fndc3b	Apoa4	Dpyd	Cebpd	Dio2	Emid1	
Bcas1	Vgll4	Daam2	Prss12	Gnb4	Cmtm3	Kcnk2	Tln1	Runx2	ltgav	Tnfrsf1b	Gstt3	Ptn	Nr3c2	Tm4sf1	
Ndrg1	Foxo4	lfitm1	Capn5	Lyn	Antxr1	Oat	Cd302	Afap 111	Acadl	Fgfbp1	Slc10a3	Adm	Aox1	BC017612	
Lrrc4c	Apobec3	Tnfaip6	Dhrs2	Rab31	Dab2	Afap1l2	Tgfbr2	Mterfd2	Etv1	Slco1a4	A4galt	Atf3	Mpa2l	Phldb1	
Fzd5	Bmp1	Nov	Plekha4	Loxl3	Kif1c	Gulp1	Jun	Ltbr	Ankrd27	Fcgr3	Ccdc80	Parp14	Gbp10	S1pr1	
Nav3	Trim26	Efemp1	Hmox1	S1pr3	Slc1a2	Sox10 ^a	Nod1	Hpgd	ld3 ^a	Clec4a2	Foxd3	C030030A07Rik	C1s	Ism1	
Rasgrp2	Dchs1	Emcn ^b	Nid2	Ctdsp2	Abca9	Slc16a9	Trpm5	Plxnd1	Sumf2	Gpr34	PhIda1	Pou3f1	Ly6a	Lect1	
Svk	Acot9	Ptms	Coch	Timp1	Flna	Srpx	Rab34	Lcp1	Vasn	Car5	Mafh	2310046A06Rik	Flt3l	Hic1	
Gstt2	Nfatc4	lina	Aspa	Taif1	Tle1	Dhh	Cd38	p · Fam109h	P2rv1	Clec4a3	Fln	Stfa2	Mybnc1	Kbtbd11	
Irf4	Mohkl2a	lum	lamh1-1	Tmem127r	Aatr?	(tsc	St3aal4	Rras	Pros1	Adamts 20	l mc∆h	Stfa3	Nkd1	(ar)	
Hhh-h1	PIn2	Henh	Nr3c1	Cannh	Yan1	Hfe	Gnr124	(nxm1	luh	(sf1r	Pde1a	(fh	Pamr1	Casa1	
Arhaef5	Rnc2	Plk2	Pear1	Twist1	Nnr3	ltah8	Mitf	llan111	l dlr	(100	Rel	(ntn6	Pcdhh9	Enhh3	
Gnv8	Frk	Crisnld1	Ptnn14	Cryba3	Tnfain8	Ptnre	Chst14	Cvr61	Fad5	Tlr7	11/96	(vd)	Stean?	Zownw1	
Spro		Sispiai	· • • • • • • • • • • • • • • • • • • •	- 1095	maipo	· · prc	CODULT		. 945		-1/0		Jacups		

Genes near each other in a column have similar expression patterns during development. "Genes well known in the inner ear. "Genes validated here by ISH.

similarly involved in ion transport. The low number of reads in cochlear SCs, in contrast to the conspicuous expression in the stria vascularis, is probably because the stria vascularis was not included in the sensory epithelium dissected for FACS.

We also used immunocytochemistry to validate predicted expression and to confirm translation of selected genes. *Lmod3* en-

codes leiomodin 3, an actin-filament nucleator (Chereau et al., 2008; Campellone and Welch, 2010; Nanda and Miano, 2012). It was predicted from HTS data to be expressed only in HCs of cochlea but not utricle, and primarily at the later two developmental stages. With antibody labeling, we found strong leiomodin 3 labeling of cochlear outer but not inner hair cells at P6, and

little or no label in the utricle, consistent with *in situ* hybridization (Figs. 7D, 8A). A closely related gene, *Lmod1*, was apparently expressed in all HCs: it was found in the embryonic and postnatal HC cluster (Fig. 6A, Table 1). By antibody label we found it throughout the cytoplasm of all HCs of the cochlea and utricle, but not SCs, as predicted by HTS (Fig. 8B).

Similarly, Ldb3 encodes the cardiac muscle protein LIM-domain-binding 3 (LDB3/ZASP/Cypher), which links α -actinin-2 to PKC (Zhou et al., 1999). HTS counts predict expression only in HCs, and more in utricular than cochlear HCs. Consistent with HTS data, we found sparse LDB3 labeling in cochlear IHCs and strong labeling in vestibular HCs, with striking localization at the circumferential actin bands of the zonula adherens (Fig. 8C). Although a limited number of genes was tested, immunocytochemistry suggests that gene expression at the mRNA level generally reflects protein expression.

Biological process changes with age

HCs in both cochlea and utricle undergo a striking differentiation between E16 and P7. The development of the cochlea is not perfectly correlated with development of the utricle: the utricle gains mechanosensitivity by E17, whereas the cochlea is delayed until P2, and hair bundles have all formed in cochlea by P2, whereas some continue to develop in utricle for 2 weeks. Even within the cochlea, development progresses from base to apex over ~ 2 d. However the broad patterns of expression may be revealed by ages separated by 3-4 d. We generated four lists of genes that are preferentially expressed in all HCs at E16, P0, P4, or P7. To investigate the biological processes associated with HC development, we used the Database for Annotation, Visualization and Integrated Discovery (DAVID) for functional annotation of these genes (Huang da et al., 2009a, b). DAVID uses the Gene Ontology classifications of associated genes with biological processes, and then calculates which processes are strongly represented in a specific gene list.

Figure 9 represents the degree of enrichment for 43 of the most represented processes, and how enrichment changes with age. E16 HCs mostly expressed genes related to morphogenesis, differentiation, and development, reflecting the transition to a HC phenotype. P0 and P4 HCs continued to express genes associated with differentiation, but sensory and inner ear categories were more highly represented.

Figure 7. Validation by *in situ* hybridization of cell specificity predicted from hierarchical clustering. Shown for each gene are the normalized HTS read counts for each condition (left), a schematic of the predicted cell specificity based on these counts (middle), and *in situ* hybridization in cochlear and vestibular sensory epithelia (right). Scale bars: 20 μ m. *A*, *Grp* was expressed in both cochlear and saccular hair cells at E18. *B*, *Grxcr2* was expressed in both cochlear and utricular hair cells at P6. *C*, *D*, *Strip2* and *Lmod3* were detected only in P6 OHCs. *E*, *Dnah5* expression was restricted to utricular hair cells at P6. *F*, *Emcn*, predicted to be in cochlear surrounding cells, was found mostly in basilar membrane at P6. *G*, *Ptgds*, predicted to be mainly in vestibular surrounding cells, was found adjacent to the sensory epithelium of the ampulla but also in the stria vascularis of the cochlea at E18. Co, cochlea; ut, utricle.

Figure 8. Validation by immunocytochemistry of predicted cell specificity at P6. Normalized HTS read counts for each condition, predicted cell specificity, and antibody labeling in cochlear and vestibular sensory epithelia. Scale bars: 20 μ m. *A*, *Lmod3* was found mostly in cochlear but not utricular hair cells; within the cochlea, it was expressed mainly in OHCs. *B*, *Lmod1* was found in all cochlear and utricular hair cells and was located throughout the cell bodies. *C*, *Ldb3* was found in cochlear and utricular hair cells; in the cochlea, it was expressed mainly in IHCs. LDB3 immunoreactivity was localized to the zonula adherens region. Co, cochlea; ut, utricle.

P7 HCs were no longer enriched in morphogenesis genes, but showed much more representation of cell signaling and synaptic genes, consistent with a mature phenotype. Although P4 HCs are largely mature in mechanosensation, these data reveal further differentiation of function between P4 and P7, especially as HCs connect to the brain.

Discussion

Isolation of HCs

Biochemical and molecular genetic studies of the HC proteome have been difficult because HCs are embedded in a sensory epithelium that includes a variety of other cell types. Biochemical characterization of one organelle—the stereocilium—has been achieved by mechanical harvesting of hair bundles (Shepherd et al., 1989; Gillespie and Hudspeth, 1991; J.B. Shin et al., 2010), but the rest of the HC has been hard to purify. A zebrafish transgenic line expressing GFP in hair cells (Tg(pou4f3:GAP-GFP)) was used to purify precursors of lateral line HC for characterizing gene expression during HC regeneration (Steiner et al., 2014), looking at earlier stages of cell-fate determination. Hertzano et al. (2011) used the endogenous cell-surface markers CD326 (*Ep*- *cam*) and CD49f (*Itga6*) to separate the sensory epithelial cells from nonsensory cells. Our data show, however, that these markers are not specific to HCs. In this study, we used FACS of cells from a transgenic mouse line (Pou4f3-*Isl1-eGFP*) to separately purify HCs and SCs of the co-chlea and the utricle. Based on the relative abundance of selected mRNAs from brightly fluorescent and nonfluorescent cells, we estimate that the samples were >99% pure.

Sorting based on Pou4f3 expression provides higher purity than with some other HC markers such as Atoh1. For instance, we and others have FACS-purified HC from the Tg(Atoh1-GFP) mouse line (M. Huang and Z.-Y. Chen, unpublished observations; Sinkkonen et al., 2011). In those experiments we found significant contamination from supporting cells, a likely consequence of the expression of Atoh1 in the common progenitors of HC and supporting cells (Yang et al., 2010; Driver et al., 2013). Gfi1 is strongly expressed by HCs, but we found it to be expressed as well by a few other cell types in the cochlea (data not shown). Pou4f3 expression is limited to HCs, so its promoter is a better driver of HC-specific markers (Huang et al., 2011; Masuda et al., 2011).

Picking single cells with visual guidance is another way to achieve high purity, as HCs are morphologically distinguishable from surrounding cells. In this way, Liu et al. (2014) investigated gene expression in adult IHCs and in OHCs, but were not able to compare them to SCs (Liu et al., 2014). In the top 200 genes they found expressed in IHCs or OHCs, we found that only 42 or 50, respectively, were enriched by more than twofold in the cochlea at P7. For instance, they found

expression of the ion channel genes *Trpm3* and *Trpm7* in HCs, as we did, but these genes are expressed even more highly in SCs. Comparing HC expression with SCs, at different ages, complements such studies and gives additional insight into function.

Advantages of RNA-Seq

We used RNA-Seq to generate an unbiased dataset of HC and SC mRNAs. In other studies, a pool of 30–100 cells was sufficient to obtain high-resolution transcriptomes with RNA-Seq (Marinov et al., 2014), so our dataset, with a minimum of 1120 sorted cells (Fig. 1*D*), is expected to accurately represent HC gene expression. RNA-Seq has a much higher dynamic range than the microarrays used in our previous studies (Scheffer et al., 2007a, b), with read counts varying over a millionfold in these samples. Moreover, a significant number of genes are not represented on microarrays or have sequence errors. For instance, RNA-Seq data led us to study the *Xirp2* gene (Scheffer et al., 2015), but no probe sets corresponding to *Xirp2* are included in the Affymetrix Mouse GeneChips MG-U74v2 or MOE430 that we used previously (Scheffer et al., 2007b). Although newer microarrays are more

Figure 9. Enrichment of gene ontology categories expressed by HCs at E16 (gray), P0 (purple), P4 (blue), and P7 (red). The y-axis represents the enrichment (observed number of genes/expected).

representative, they are still limited to known transcript isoforms, are unable to detect transcripts expressed at low levels, are saturated for highly expressed transcripts, and are difficult to use for cross-platform analysis. RNA-Seq data may be reanalyzed with data from different studies or with new reference sequences to generate new insights. While RNA-Seq data do not replace existing microarray-generated transcriptomic data, the miniaturization of RNA-Seq library preparation, the high multiplexibility with DNA barcodes, the ability to use single cells (Shalek et al., 2014), and the striking decline in sequencing costs all suggest that RNA-Seq should be the method of choice for transcript quantification.

SHIELD database

We compiled these expression data in the Shared Harvard Inner Ear Laboratory Database (SHIELD; https://shield.hms.harvard.edu). It includes similar expression data from other laboratories (Lu et al., 2011; Shin et al., 2013; Kwan et al., 2015) and provides links for each gene to a variety of other databases.

Sorting by hierarchical analysis of gene expression

To understand the development and differentiation of HC, we performed RNA-Seq of HC mRNA at various developmental stages. These data can be sorted or clustered in a variety of ways to identify genes that may be involved in particular functions. We began with a hierarchical clustering that groups genes based on their expression levels in the 16 conditions. We were able to identify genes that are upregulated during development of mechanosensitivity (E16 compared with P0 in the utricle and P0 compared with P4 in the cochlea). Many such genes are known to be essential for HC function (Fig. 6*A*, *B*), and these include the following: *Tmc1*, *Tmc2*, *Pcdh15*, *Cdh23*, *Lhfpl5*, *Myo15*, *Tmie*, and *Fscn2*. It is likely that many more genes important for mechanotransduction are among this subset.

Another cluster contained genes that are highly expressed in cochlear HCs but less so in utricular HCs (Fig. 6*C*). Because the cochlear sample is dominated by OHCs, many genes enriched in cochlea relative to utricle may participate in functions unique to OHCs. With *in situ* hybridization or specific antibodies, we validated the restricted expression in OHCs of two such genes, *Lmod3* and *Strip2* (Figs. 6*C*,*D*, 7*A*). The STRIP2 protein is associated with cortical F-actin bundles and cell–cell adhesion (Goudreault et al., 2009; Bai et al., 2011) and may participate in the OHC cortical lattice. *Slc26a5*, *Strip2*, and *Lmod3* were consistently found in the 222 genes enriched in cochlear HCs (Fig. 2*D*). Our comparison of cochlear and utricular HCs is not as direct as that of Liu et al. (2014) for determining IHC and OHC differences, but has the advantages of much greater dynamic range and an understanding of changes in expression during development.

A third cluster is expressed in HCs, but more highly in utricle than cochlea (Fig. 6D). Some of these encode proteins associated with microtubule-based cilia; they could be components of the kinocilia, which are present in utricle but absent in mature cochlea.

Some closely related genes have very different expression patterns in the inner ear, reflecting distinct function even within one cell type such as HCs. For instance, the leiomodins, *Lmod1* and *Lmod3* (Fig. 8), are differentially expressed: *Lmod1* is expressed in all HCs of the inner ear, throughout development, whereas *Lmod3* is restricted to the OHC, and only after P0.

It is important to recognize the limitations of such comparisons. In this analysis, genes highly enriched in HCs are enriched only relative to SCs. They might be highly expressed in related cell types such as central neurons, and not unique to HCs. Similarly, genes expressed in both HCs and SCs might, nevertheless, be exclusive to inner ear sensory epithelia and appear nowhere else in the body. Comparison to expression databases from other tissues can help illuminate the possible functions of a gene.

Finally, genes expressed in other cochlear cell types and important for other aspects of cochlear function could be identified in the same way, limited only by the availability and specificity of mouse lines expressing a fluorescent tag in certain cells of the inner ear.

Deafness

These data, presented in the SHIELD database, have already helped identify a new Usher syndrome gene, CIB2 (Riazuddin et al., 2012), and helped confirm the HC expression of Kir2, an inwardly rectifying potassium channel protein (Levin and Holt, 2012). One of the genes most highly enriched in our HC data is Grxcr2, and mutations in human GRXCR2 were recently found to cause recessive hearing loss (Imtiaz et al., 2014). Another highly enriched gene is XIRP2; in related work we found XIRP2 to be associated with the stereocilia and cuticular plates of HCs, and to cause progressive stereocilia disorganization when absent (Scheffer et al., 2015). We expect that these expression data will aid in the discovery of additional human deafness genes. In addition, deafness is not always associated with vestibular dysfunction, and indeed we found many genes enriched in just cochlea or utricle. Differential expression data should aid in understanding the etiology of complex inner ear disorders.

In summary, we performed the first comprehensive gene expression study specific for vestibular and cochlear HCs during mouse development. The public database generated is a powerful tool for discovering and understanding proteins involved in HC function. We anticipate these data will lead to the discovery of new genes important for HC mechanotransduction and new deafness genes in mouse and human.

References

- Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. CrossRef Medline
- Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI, Poland GA, Wieben ED, Kocher JP (2009) 3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genomics 10:531. CrossRef Medline
- Bai SW, Herrera-Abreu MT, Rohn JL, Racine V, Tajadura V, Suryavanshi N, Bechtel S, Wiemann S, Baum B, Ridley AJ (2011) Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol 9:54. CrossRef Medline
- Beckers A, Alten L, Viebahn C, Andre P, Gossler A (2007) The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left right patterning. Proc Natl Acad Sci U S A 104:15765–15770. CrossRef Medline
- Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841. CrossRef Medline
- Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T (2006) Expression of Prox1 during mouse cochlear development. J Comp Neurol 496:172–186. CrossRef Medline
- Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11:237–251. CrossRef Medline
- Carlisle FA, Steel KP, Lewis MA (2012) Specific expression of Kcna10, Pxn and Odf2 in the organ of Corti. Gene Expr Patterns 12:172–179. CrossRef Medline
- Chen P, Segil N (1999) p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126:1581–1590. Medline
- Chereau D, Boczkowska M, Skwarek-Maruszewska A, Fujiwara I, Hayes DB, Rebowski G, Lappalainen P, Pollard TD, Dominguez R (2008) Leiomodin is an actin filament nucleator in muscle cells. Science 320:239–243. CrossRef Medline
- Cotanche DA, Kaiser CL (2010) Hair cell fate decisions in cochlear development and regeneration. Hear Res 266:18–25. CrossRef Medline
- Driver EC, Sillers L, Coate TM, Rose MF, Kelley MW (2013) The Atoh1lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 376:86–98. CrossRef Medline

- Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG (2001) Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci 21:5066–5078. Medline
- Géléoc GS, Holt JR (2003) Developmental acquisition of sensory transduction in hair cells of the mouse inner ear. Nat Neurosci 6:1019–1020. CrossRef Medline
- Géléoc GS, Holt JR (2014) Sound strategies for hearing restoration. Science 344:1241062. CrossRef Medline
- Gillespie PG, Hudspeth AJ (1991) High-purity isolation of bullfrog hair bundles and subcellular and topological localization of constituent proteins. J Cell Biol 112:625–640. CrossRef Medline
- Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537. CrossRef Medline
- Goudreault M, D'Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B, Gingras AC (2009) A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics 8:157–171. CrossRef Medline
- Groves AK (2010) The challenge of hair cell regeneration. Exp Biol Med 235:434–446. CrossRef Medline
- Hartman BH, Basak O, Nelson BR, Taylor V, Bermingham-McDonogh O, Reh TA (2009) Hes5 expression in the postnatal and adult mouse inner ear and the drug-damaged cochlea. J Assoc Res Otolaryngol 10:321–340. CrossRef Medline
- Hertzano R, Dror AA, Montcouquiol M, Ahmed ZM, Ellsworth B, Camper S, Friedman TB, Kelley MW, Avraham KB (2007) Lhx3, a LIM domain transcription factor, is regulated by Pou4f3 in the auditory but not in the vestibular system. Eur J Neurosci 25:999–1005. CrossRef Medline
- Hertzano R, Elkon R, Kurima K, Morrisson A, Chan SL, Sallin M, Biedlingmaier A, Darling DS, Griffith AJ, Eisenman DJ, Strome SE (2011) Cell type-specific transcriptome analysis reveals a major role for Zeb1 and miR-200b in mouse inner ear morphogenesis. PLoS Genet 7:e1002309. CrossRef Medline
- Huang da W, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13. CrossRef Medline
- Huang da W, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. CrossRef Medline
- Huang M, Sage C, Li H, Xiang M, Heller S, Chen ZY (2008) Diverse expression patterns of LIM-homeodomain transcription factors (LIM-HDs) in mammalian inner ear development. Dev Dyn 237:3305–3312. CrossRef Medline
- Huang M, Sage C, Tang Y, Lee SG, Petrillo M, Hinds PW, Chen ZY (2011) Overlapping and distinct pRb pathways in the mammalian auditory and vestibular organs. Cell Cycle 10:337–351. CrossRef Medline
- Huang M, Kantardzhieva A, Scheffer D, Liberman MC, Chen ZY (2013) Hair cell overexpression of Islet1 reduces age-related and noise-induced hearing loss. J Neurosci 33:15086–15094. CrossRef Medline
- Hume CR, Bratt DL, Oesterle EC (2007) Expression of LHX3 and SOX2 during mouse inner ear development. Gene Expr Patterns 7:798–807. CrossRef Medline
- Imtiaz A, Kohrman DC, Naz S (2014) A frameshift mutation in GRXCR2 causes recessively inherited hearing loss. Hum Mutat 35:618–624. CrossRef Medline
- Jones JM, Montcouquiol M, Dabdoub A, Woods C, Kelley MW (2006) Inhibitors of Differentiation and DNA Binding (Ids) Regulate Math1 and Hair Cell Formation during the Development of the Organ of Corti. J Neurosci 26:550–558. CrossRef Medline
- Kawashima Y, Géléoc GS, Kurima K, Labay V, Lelli A, Asai Y, Makishima T, Wu DK, Della Santina CC, Holt JR, Griffith AJ (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channellike genes. J Clin Invest 121:4796–4809. CrossRef Medline
- Keithley EM, Erkman L, Bennett T, Lou L, Ryan AF (1999) Effects of a hair cell transcription factor, Brn-3.1, gene deletion on homozygous and heterozygous mouse cochleas in adulthood and aging. Hear Res 134:71–76. CrossRef Medline
- Kwan KY, Shen J, Corey DP (2015) C-MYC transcriptionally amplifies

SOX2 target genes to regulate self-renewal in multipotent otic progenitor cells. Stem Cell Reports 4:47–60. CrossRef Medline

- Lee SI, Conrad T, Jones SM, Lagziel A, Starost MF, Belyantseva IA, Friedman TB, Morell RJ (2013) A null mutation of mouse Kcna10 causes significant vestibular and mild hearing dysfunction. Hear Res 300:1–9. CrossRef Medline
- Lelli A, Asai Y, Forge A, Holt JR, Géléoc GS (2009) Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea. J Neurophysiol 101:2961–2973. CrossRef Medline
- Levin ME, Holt JR (2012) The function and molecular identity of inward rectifier channels in vestibular hair cells of the mouse inner ear. J Neurophysiol 108:175–186. CrossRef Medline
- Liu H, Pecka JL, Zhang Q, Soukup GA, Beisel KW, He DZ (2014) Characterization of transcriptomes of cochlear inner and outer hair cells. J Neurosci 34:11085–11095. CrossRef Medline
- Lu CC, Appler JM, Houseman EA, Goodrich LV (2011) Developmental profiling of spiral ganglion neurons reveals insights into auditory circuit assembly. J Neurosci 31:10903–10918. CrossRef Medline
- Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, Wold BJ (2014) From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 24:496–510. CrossRef Medline
- Masuda M, Dulon D, Pak K, Mullen LM, Li Y, Erkman L, Ryan AF (2011) Regulation of POU4F3 gene expression in hair cells by 5' DNA in mice. Neuroscience 197:48–64. CrossRef Medline
- Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra MA (2009) Next-generation tag sequencing for cancer gene expression profiling. Genome Res 19:1825–1835. CrossRef Medline
- Nanda V, Miano JM (2012) Leiomodin 1, a new serum response factordependent target gene expressed preferentially in differentiated smooth muscle cells. J Biol Chem 287:2459–2467. CrossRef Medline
- Peng AW, Salles FT, Pan B, Ricci AJ (2011) Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction. Nat Commun 2:523. CrossRef Medline
- Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP, Dai X, Chen P (2007) Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 306:121–133. CrossRef Medline
- Riazuddin S, Belyantseva IA, Giese AP, Lee K, Indzhykulian AA, Nandamuri SP, Yousaf R, Sinha GP, Lee S, Terrell D, Hegde RS, Ali RA, Anwar S, Andrade-Elizondo PB, Sirmaci A, Parise LV, Basit S, Wali A, Ayub M, Ansar M, et al. (2012) Alterations of the CIB2 calcium- and integrinbinding protein cause Usher syndrome type 1J and nonsyndromic deafness DFNB48. Nat Genet 44:1265–1271. CrossRef Medline
- Robertson NG, Resendes BL, Lin JS, Lee C, Aster JC, Adams JC, Morton CC (2001) Inner ear localization of mRNA and protein products of COCH, mutated in the sensorineural deafness and vestibular disorder, DFNA9. Hum Mol Genet 10:2493–2500. CrossRef Medline
- Scheffer D, Sage C, Corey DP, Pingault V (2007a) Gene expression profiling identifies Hes6 as a transcriptional target of ATOH1 in cochlear hair cells. FEBS Lett 581:4651–4656. CrossRef Medline
- Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V (2007b) The alpha1 subunit of nicotinic acetylcholine receptors in the inner ear: transcriptional regulation by ATOH1 and co-expression with the gamma subunit in hair cells. J Neurochem 103:2651–2664. CrossRef Medline
- Scheffer DI, Zhang D-S, Shen J, Indzhykulian A, Karavitaki KD, Xu YJ, Wang

Q, Lin JJ-C, Chen Z-Y, Corey DP (2015) XIRP2, an actin-binding protein essential for inner ear hair-cell stereocilia. Cell Rep 10:1811–1818. CrossRef Medline

- Schimmang T (2013) Transcription factors that control inner ear development and their potential for transdifferentiation and reprogramming. Hear Res 297:84–90. CrossRef Medline
- Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS, Gaublomme JT, Yosef N, Schwartz S, Fowler B, Weaver S, Wang J, Wang X, Ding R, Raychowdhury R, Friedman N, Hacohen N, Park H, et al. (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:363–369. CrossRef Medline
- Shepherd GM, Barres BA, Corey DP (1989) "Bundle blot" purification and initial protein characterization of hair cell stereocilia. Proc Natl Acad Sci U S A 86:4973–4977. CrossRef Medline
- Shin JB, Longo-Guess CM, Gagnon LH, Saylor KW, Dumont RA, Spinelli KJ, Pagana JM, Wilmarth PA, David LL, Gillespie PG, Johnson KR (2010) The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2J mice. J Neurosci 30:9683–9694. CrossRef Medline
- Shin JB, Krey JF, Hassan A, Metlagel Z, Tauscher AN, Pagana JM, Sherman NE, Jeffery ED, Spinelli KJ, Zhao H, Wilmarth PA, Choi D, David LL, Auer M, Barr-Gillespie PG (2013) Molecular architecture of the chick vestibular hair bundle. Nat Neurosci 16:365–374. CrossRef Medline
- Shin MJ, Lee JH, Yu DH, Kim HJ, Bae KB, Yuh HS, Kim MO, Hyun BH, Lee S, Park R, Ryoo ZY (2010) Spatiotemporal expression of tmie in the inner ear of rats during postnatal development. Comp Med 60:288–294. Medline
- Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K, Heller S (2011) Intrinsic regenerative potential of murine cochlear supporting cells. Sci Rep 1:26. CrossRef Medline
- Smith RJH, Shearer AE, Hildebrand MS, Van Camp G (1993) Deafness and hereditary hearing loss overview. In: GeneReviews(R) (Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K, eds). Seattle, WA: University of Washington.
- Steijger T, Abril JF, Engström PG, Kokocinski F, Hubbard TJ, Guigó R, Harrow J, Bertone P, Consortium R (2013) Assessment of transcript reconstruction methods for RNA-seq. Nat Methods 10:1177–1184. CrossRef Medline
- Steiner AB, Kim T, Cabot V, Hudspeth AJ (2014) Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line. Proc Natl Acad Sci U S A 111:E1393–E1401. CrossRef Medline
- Yang H, Xie X, Deng M, Chen X, Gan L (2010) Generation and characterization of Atoh1-Cre knock-in mouse line. Genesis 48:407–413. CrossRef Medline
- Yoon H, Lee DJ, Kim MH, Bok J (2011) Identification of genes concordantly expressed with Atoh1 during inner ear development. Anat Cell Biol 44: 69–78. CrossRef Medline
- Zhou Q, Ruiz-Lozano P, Martone ME, Chen J (1999) Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J Biol Chem 274:19807–19813. CrossRef Medline
- Zine A, Van De Water TR, de Ribaupierre F (2000) Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 127:3373–3383. Medline
- Zuo J (2002) Transgenic and gene targeting studies of hair cell function in mouse inner ear. J Neurobiol 53:286–305. CrossRef Medline